hand
_1_21_52
4
python3.X - 数据分析 - Pandas
共95篇
python3.X - 数据分析 - Pandas
返回栏目
1k
0k
5k
0k
0.1k
0k
2k
3k
1k
1k
0.2k
3k
0k
4k
3k
3k
3k
3k
0.5k
5k
1k
0.3k
3k
4k
7k
2k
7k
0.8k
0.9k
1k
1k
2k
0.4k
0.6k
0.6k
0.5k
0.9k
0.9k
1k
0.9k
1k
0.8k
1k
0.4k
0.4k
0.3k
0.6k
1k
0.9k
1k
1k
1k
0.8k
1k
0.8k
1k
0.7k
0.6k
4k
0.4k
3k
0.7k
0.8k
0.8k
0.2k
2k
1k
0.7k
0.7k
0.4k
0.5k
3k
0.1k
0.7k
0.9k
0.3k
1k
0.4k
0.4k
1k
0.5k
0.1k
0.7k
1k
0k
0.2k
0.7k
0.3k
0k
0k
0.1k
0k
0k
0k
3k
返回python3.X - 数据分析 - Pandas栏目
作者:
贺及楼
成为作者
更新日期:2024-07-17 23:11:41
删除列可以直接使用del
import numpy as np
import pandas as pd
df = pd.DataFrame(data=[{"A":"one", "B":"a"}, {"A":"two", "B":"b"}, {"A":"one", "B":1}])
A | B | |
---|---|---|
0 | one | a |
1 | two | b |
2 | one | 1 |
删除 A 列,会就地修改
del df['A']
B | |
---|---|
0 | a |
1 | b |
2 | 1 |
通过列名称删除:
df = df.drop(['B', 'C'], axis=1) # drop不会就地修改,创建副本返回
df.drop(['B', 'C'], axis=1, inplace=True) # inplace=True会就地修改
使用列数删除,传入参数是int,列表,者切片:
df.drop(df.columns[0], axis=1, inplace=True) # 删除第1列
df.drop(df.columns[0:3], axis=1, inplace=True) # 删除前3列
df.drop(df.columns[[0, 2]], axis=1, inplace=True) # 删除第1第3列
python3.X - 数据分析 - Pandas
整章节共95节
快分享给你的小伙伴吧 ~